Last time

Propagation of a photon in a weak gravitational field:

\[\vec{x}(t) = \vec{x}(t) + \delta \vec{x}(t) \quad \text{with} \]

\[\vec{x}(t) = \vec{x}_0 + \vec{\eta}(t - t_0) \]

\[\delta \vec{x}(t) = \delta x_u(t) \vec{\eta} + \delta \vec{x}_\perp, \quad \delta \vec{x}_\perp \cdot \vec{\eta} = 0. \]

\[
\frac{d^2 \delta \vec{x}_\perp}{dt^2} = -(1 + \chi) \left[\vec{\nabla} \phi - \vec{\eta} (\vec{\eta} \cdot \vec{\nabla} \phi) \right]
\]

\(\delta \vec{x}_\perp \) describes the deflection of the photon from its "straight" trajectory caused by the gravitational field.

Consider now the deflection caused by a massive object like a star:
Choosing boundary conditions such that
\[
\frac{d\delta \mathbf{x}_1}{dt} \bigg|_{t_m} = \mathbf{0}, \quad \text{since } \mathbf{\tilde{n}} \text{ has unit norm,}
\]

\[
\mathbf{x} = - \int_{t_m}^{t_{obs}} dt \frac{d^2 \delta \mathbf{x}_1}{dt^2} = (1+r) \int_{t_m}^{t_{obs}} dt \left[\nabla \phi - \mathbf{\tilde{n}} (\nabla \mathbf{\cdot} \nabla \phi) \right].
\]

The gravitational potential due to the star is
\[
\phi (\mathbf{x}) = - \frac{6M}{|\mathbf{x}|} \quad \text{(star located at } \mathbf{x} = 0)\]

To leading order, we write the potential along the unperturbed trajectory: \(\mathbf{x} = \bar{x}_e + \mathbf{\tilde{n}} (t-t_e) \).

Since
\[
\frac{\partial \phi}{\partial x^i} = \frac{2}{\partial x^i} \left(- \frac{6M}{|\mathbf{x}|} \right) = \frac{2}{\partial x^i} \left(- \frac{6M}{(\bar{x}^2)^{1/2}} \right) = \frac{GM}{(\bar{x}^2)^{3/2}}
\]

\((\nabla \phi)(\mathbf{x}(t)) = \frac{GM}{(\bar{x}(t))^{3/2}} \mathbf{x}(t) \) and hence
\[[\nabla \phi - \vec{n} \cdot (\nabla \phi)] (\vec{x}(t)) = \frac{GM}{(\vec{x}(t))^3} \frac{(\vec{x}(t) - \vec{n} \cdot (\vec{n} \cdot \vec{x}(t)))}{b} \text{ (perpendicular component of trajectory)} \]

Hence

\[\vec{a} = (1+\varepsilon) \int_{t_\text{os}}^{t_\text{fin}} dt \frac{GM}{(\vec{x}(t))^3} \vec{b} = (1+\varepsilon) \frac{GM}{b} \int_{t_\text{os}}^{t_\text{fin}} dt \frac{GM}{[(\vec{x}_\text{e} + \vec{n}(t-t_\text{e}))^2]^{3/2}} \]

\[= (1+\varepsilon) \frac{GM}{b} \int_{t_\text{os}}^{t_\text{fin}} dt \frac{1}{(b^2 + (t-t_\text{e})^2)^{3/2}} \]

\[= (1+\varepsilon) \frac{GM}{b} \left. \frac{t}{b^2 \sqrt{b^2 + t^2}} \right|_{t_\text{os} - t_\text{e}}^{t_\text{fin} - t_\text{e}} = \frac{2 (1+\varepsilon) GM b}{b^2} \]

\[\alpha = \frac{2 (1+\varepsilon) GM}{b} \]

In GR \(\varepsilon = 1 \), so \(\alpha = \frac{4 GM}{b} \). The deflection of a light ray from a fixed star that just grazes the sun (\(b = R_\odot \)) was measured during
a solar eclipse by an expedition led by Eddington in 1919. The measurement agreed with the predictions of GR.

Exercise 37

Calculate the deflection angle (in arc sec) caused by the sun for $b = R_0$ (sun radius).

This is one of the three "classical tests" of GR.

There is an additional effect caused by the gravitational field: From the previous lecture:

\[\vec{v} \cdot \frac{d\vec{x}}{dt} = (1 + \gamma) \Phi \quad \text{or} \quad \frac{d\Phi}{dt} = (1 + \gamma) \Phi \]

Since $\Phi < 0$, a light ray takes longer to cover a given distance: Shapiro's time delay
This is the effect exploited by the Cassini mission to place constraints on ϕ.

To end our discussion of the scalar sector, consider the linearized equations in vacuum:

$$2 \nabla^2 \psi = 0 \quad \Rightarrow \quad \psi = 0$$

$$\partial_i \psi = 0$$

$$(\partial_i \partial^i - 2 \delta_{ij}) (\phi - \psi) + 2 \phi \delta_{ij} = 0 \quad \Rightarrow \quad \phi = 0.$$

In general relativity, the scalar sector is non-dynamical. (Metric perturbations are constrained to vanish).

Vector sector

Consider now vector metric perturbations:

$$ds^2 = -dt^2 + \delta_{ij} \, dx^i \, dx^j + [\delta_{ij} + \partial_i \psi_j + \psi_i \psi_j] \, dx^i \, dx^j.$$

Under a gauge transformation with ξ^μ,

$$h_{\mu \nu} \rightarrow h_{\mu \nu} - \partial_\mu \xi_\nu - \partial_\nu \xi_\mu.$$
ϵ^i is a scalar. We can decompose

$$\epsilon_i = \partial_i \epsilon + T \epsilon_i, \quad \partial_i T \epsilon_i = 0 \text{ (transverse)}$$

under gauge transformations with parameters $T \epsilon_i$,

$$\begin{cases}
\Delta S_i = -T \epsilon_i; \\
\Delta T_i = -T \epsilon_i;
\end{cases}$$

Thus, by choosing $T \epsilon_i = T_i$ we can set $T_i = 0$:

$$T_i \rightarrow T_i + \Delta T_i = T_i - T \epsilon_i = 0.$$

In this gauge the linearized Einstein's eqs are:

$$\begin{cases}
\delta G_{00} = 0 = \nabla^2 \Phi_0, \\
\delta G_{0i} = -\frac{1}{2} \nabla^2 S_i = 8 \pi G T_{0i}, \\
\delta G_{ij} = -\frac{1}{2} \nabla^2 S_{ij} - \frac{1}{2} \nabla^2 S_{ij} = 8 \pi G T_{ij},
\end{cases}$$

with

$$T_{ij} = (\rho + p) u_i u_j + pg_{ij},$$

$$= -p \delta_{ij} + O(\epsilon^2).$$
we find, with \(\mathbf{v}_i \), the transverse component of \(\nu_i \)

\[
\nabla^2 S_{ij} = 16\pi G \rho \nu_{ij}, \quad \text{or}
\]

\[
S_{ij}^{(x)} = -4G \int d^3x' \frac{\rho \nu_{ij}^{(x')}}{|\mathbf{x} - \mathbf{x}'|}
\]

To linear order in the velocity of the test particle, the geodesic equation is

\[
\frac{d^2 x^i}{dt^2} + \Gamma^i_{00} + 2\Gamma^i_{0j} \nu^j = 0.
\]

In the vector vector, \(\Gamma^i_{00} = S_i \)

\[
\Gamma^i_{0j} = \frac{1}{2} \left(\partial_j S^i - \partial^i S_j \right).
\]

Hence

\[
\frac{d^2 x^i}{dt^2} = - S_i - \left(\partial_j S^i - \partial^i S_j \right) \nu^j.
\]

Define now \(\vec{E} = - \nabla S \) and

\[
\vec{B} = \nabla \times \vec{S} \quad (B_i = \epsilon_i^{jk} \partial_j S_k)
\]
Exercise 28

Show that the geodesic equation can be cast as

$$\frac{d^2 \vec{x}}{dt^2} = \vec{E} + \vec{\nabla} \times \vec{B}$$

"Gravitomagnusm". The geodesic equation takes the form of the Lorentz force, with

$$\vec{F} = m (\vec{E} + \vec{\nabla} \times \vec{B}).$$

The vector \vec{S} plays the role of the vector potential \vec{A}. Adding the contribution of the scalar potential ϕ we have the geodesic equation

$$\frac{d^2 \vec{x}}{dt^2} = \vec{E} + \vec{\nabla} \times \vec{B},$$

with

$$\vec{E} = -\vec{\nabla} \phi - \vec{S}, \quad \vec{B} = \vec{\nabla} \times \vec{S} \quad \text{exactly as in EM}!$$
Consider now an observer that parallel-transport a spatial vector \mathbf{V}:

$$ u^m \nabla_m V^i = 0, \quad u^m V_m = 0 \quad \text{(spatial)} $$

Since to lowest approximation $u^i = (1, 0)$ we can write

$$ u^0 \nabla_j V^i = \dot{V}^i + \Pi^i_{\ j} V^j = 0 $$

or, as before

$$ [\Pi^i_{\ j} = \frac{1}{2} \left(\partial_j s^i - \partial^i s_j \right)] $$

$$ \frac{\partial \mathbf{V}}{\partial t} = \frac{1}{2} \mathbf{V} \times \mathbf{B} $$

where $\mathbf{B} = \nabla \times \mathbf{J}$, $\mathbf{B}(\mathbf{x}) = -4 \pi \int d^3 x' \ \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$

Therefore, the spatial vector \mathbf{V} precesses, with angular velocity $\frac{\mathbf{B}}{2}$. This is known as the Lense-Thirring effect, also known as frame dragging.
Consider a massive planet like the Earth which rotates around its axis
with angular velocity \(\omega \). Then, on dimensional grounds and because of
symmetry,

\[
\vec{B} = \frac{GM R \hat{w}}{R R} = \frac{GM}{R} \hat{w}.
\]

Thus, the rotation of the planet drags along inertial frames.

One of the main goals of gravity probe B is to detect this effect.

To conclude: In vacuum \(\vec{S} = 0 \)

\(\Rightarrow \) The vector vector of general relativity

is non-dynamical.